深度学习面试100题(第81-85题)


81、下列哪个函数不可以做激活函数?

A、y = tanh(x)

B、y = sin(x)

C、y = max(x,0)

D、y = 2x

正确答案是:D

解析:

线性函数不能作为激活函数。

82、假设我们有一个如下图所示的隐藏层。隐藏层在这个网络中起到了一定的降纬作用。假如现在我们用另一种维度下降的方法,比如说主成分分析法(PCA)来替代这个隐藏层。

5.jpg


深度学习面试100题(第81-85题)
那么,这两者的输出效果是一样的吗?

A、是

B、否

正确答案是:B

解析:

PCA 提取的是数据分布方差比较大的方向,隐藏层可以提取有预测能力的特征

83、下图显示了训练过的3层卷积神经网络准确度,与参数数量(特征核的数量)的关系。

6.jpg


深度学习面试100题(第81-85题)
从图中趋势可见,如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么?

A、即使增加卷积核的数量,只有少部分的核会被用作预测

B、当卷积核数量增加时,神经网络的预测能力(Power)会降低

C、当卷积核数量增加时,导致过拟合

D、以上都不正确

正确答案是:C

解析:

网络规模过大时,就可能学到数据中的噪声,导致过拟合

84、在下面哪种情况下,一阶梯度下降不一定正确工作(可能会卡住)?

A、

1.png


B、

2.png


C、

3.png


正确答案是:B

解析:

这是鞍点(Saddle Point)的梯度下降的经典例子。另,本题来源于:https://www.analyticsvidhya.co ... ning/

85、假设你需要调整超参数来最小化代价函数(cost function),会使用下列哪项技术?

A、穷举搜索

B、随机搜索

C、Bayesian优化

D、都可以

正确答案是:D
已邀请:

要回复问题请先登录注册

返回顶部