深度学习面试100题(第96-100题)


96、假设你有5个大小为7x7、边界值为0的卷积核,同时卷积神经网络第一层的深度为1。此时如果你向这一层传入一个维度为224x224x3的数据,那么神经网络下一层所接收到的数据维度是多少?

A、218x218x5

B、217x217x8

C、217x217x3

D、220x220x5

正确答案是:A

97、假设我们有一个使用ReLU激活函数(ReLU activation function)的神经网络,假如我们把ReLU激活替换为线性激活,那么这个神经网络能够模拟出同或函数(XNOR function)吗?

A、可以

B、不好说

C、不一定

D、不能

正确答案是:D

解析:

使用ReLU激活函数的神经网络是能够模拟出同或函数的。

但如果ReLU激活函数被线性函数所替代之后,神经网络将失去模拟非线性函数的能力。

98、考虑以下问题:

假设我们有一个5层的神经网络,这个神经网络在使用一个4GB显存显卡时需要花费3个小时来完成训练。而在测试过程中,单个数据需要花费2秒的时间。 如果我们现在把架构变换一下,当评分是0.2和0.3时,分别在第2层和第4层添加Dropout,那么新架构的测试所用时间会变为多少?

A、少于2s

B、大于2s

C、仍是2s

D、说不准

正确答案是:C

解析:

在架构中添加Dropout这一改动仅会影响训练过程,而并不影响测试过程。

99、下列的哪种方法可以用来降低深度学习模型的过拟合问题?

1 增加更多的数据

2 使用数据扩增技术(data augmentation)

3 使用归纳性更好的架构

4 正规化数据

5 降低架构的复杂度

A、1 4 5

B、1 2 3

C、1 3 4 5

D、所有项目都有用

正确答案是:D

解析:

上面所有的技术都会对降低过拟合有所帮助。

100、混沌度(Perplexity)是一种常见的应用在使用深度学习处理NLP问题过程中的评估技术,关于混沌度,哪种说法是正确的?

A、混沌度没什么影响

B、混沌度越低越好

C、混沌度越高越好

D、混沌度对于结果的影响不一定

正确答案是: B
已邀请:

要回复问题请先登录注册

返回顶部